2023 Consumer Confidence Report for Public Water System NORTH KAUFMAN WSC

This is your water quality report for January 1 to December 31, 2023

NORTH KAUFMAN WSC provides surface water from: Lake Lavon-City of Kaufman Lake Tawakoni-City of Terrell in Kaufman County.

For more information regarding this report contact:

Name: Greg Perkins / General Manager

Phone: 972-962-7614

Este reporte incluye información importante sobre el egua para tomar. Para asistencia en español, favor de llamar al telefono (972) 962 - 7614.

Definitions and Abbreviations

Definitions and Abbreviations

The following tables contain scientific terms and measures, some of which may require explanation-

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

AVE

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: Level 2 Assessment A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our

water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coll MCL violation has occurred

and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level or MCL:

Maximum Contaminant Level Goal or MCLG: Maximum residual disinfectant level or MRDL: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

contaminants.

Maximum residual disinfectant level goal or MRDLG:

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to

control microbial contaminants. million fibers per liter (a measure of asbestos)

MFL mrem

millirems per year (a measure of radiation absorbed by the body)

NTU pCI/L nephelometric turbidity units (a measure of turbidity) picocuries per liter (a measure of radioactivity)

06/26/2024 - TX1290021_2023_2024-06-26_12-38-44.DOC

Definitions and Abbreviations

ppb: micrograms per liter or parts per billion
ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)
ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

in order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

06/26/2024 - TX1290021_2023 2024-06-26_12-38-44.DOC

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

NORTH KAUFMAN WSC purchases water from THE CITY OF KAUFMAN & THE CITY OF TERRELL which provides surface water from Lake Lavon & Lake Tawakoni located in Kaufman County.
TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact Greg Perkins, 972-962-7614.

Coliform Bacteria

	and the control of the section of th	And the second s	put mouse accurate a fill of the art promiter of an other pass begreat.	direction to provide an extension of provided the state of the state o	the state of the s		designations, and the contraction of the contractio
- 1	Maximum Contaminant	Total Coliform	Highest No. of Positive		Total No. of Positive E. Coll	Violation	Likely Source of Contamination
-	Level Goal	Maximum		Maximum Contaminant Level	or Fecal Coliform Samples		
- 1		Contaminant Level		and the same of the same and th	and the same of th		A CONTRACTOR OF THE ACCOUNT OF THE A
	0	1 positive monthly	0	0	0	N .	Naturally present in the environment.
-		sample.					
1		CONTRACTOR PROPERTY AND ADDRESS OF THE PARTY A			and the same of th	-	

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	N Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.685	0	ppm		Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing

2023 Water Quality Test Results

06/26/2024 - TX1290021_2023_2024-06-26_12-38-44.DOC

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	21.9	15.3 - 29	No goal for the total	60	dad	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2023	38	17.6 - 43.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection.	
							Land and the same		i

^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2023	0.29	0.29 - 0.29	10	10	ppm		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2023	2.16	0.9 4.1	4	<4	ppm	N	Water additive used to control microbes.

Violations

Chlorine Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. Violation Type Violation Begin Violation Explanation

Violations

Disinfectant Level Quarterly Operating Report (DLQOR).	04/01/2023		We failed to submit our Quarterly DLQOR test results for our drinking water for the contaminant and period indicated. Upon submitting the required test reports the violation ended on 6/30/23. NKWSC test the water daily and all levels were within the required ranges during this period.
--	------------	--	---

06/26/2024 - TX1290021_2023_2024-06-26_12-38-44.DOC

2023 Annual Drinking Water Quality Report (Consumer Confidence Report)

Annual Water Quality Report for the period of January 1 to December 31. 2023 PWS ID Number TX 1290003.

This report is intended to provide you with important information about your drinking water and the efforts made the water system to provide safe drinking water.

CITY OF KAUFMAN is Purchased Surface Water for more information regarding this report contact:

Director of Public Works
Tim Hopwood
Office Phone Number:
(972)-962-8007

Public Participation Opportunities

Date: Wednesday, April 10th, 2024

Time: 10:00 a.m.

Location: Public Works Office 1003 W. Grove

Phone Number: 972-962-8007

To Learn about future public meetings (concerning your drinking water) or to request to schedule one, please call us.

Source of Drinking Water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may

reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800)-426-4791.

Addition Health and Lead Information below:

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain

contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may case taste, color or odor problems. These types of problems are not necessarily caused for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water, infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800)-426-4791).

Lead in Home Plumbing: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 minutes to 2 minutes before using water for drinking or cooking. If you are concerned about lead in our water, you may wish to have your water tested Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the **Safe Drinking Water Hot line** or at http://www.epa.gov/safewater/lead.

En Español

Este informe incluye information important sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (972) 962-8007- para hablar con una persona bilingüe en español.

laximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coll Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample	0	0	0	N	Naturally present in the environment.

NOTE: Reported monthly tests found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria may be present.

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2023	26.1	13.2-28.00	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	47.4	24.2-58.6	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Bromate	2023	Levels lower than detect level	0-0	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff fro glass and electronics production wastes.
Barium	2023	0.048	0.041 - 0.048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refinerie erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industrie
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	199	28 - 199	0-0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.968	0.537 - 0.968	4	4	ppm	No	Erosion of natural deposits, water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.790	0.067 - 0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide,
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2023	0.2	0.1 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil furnigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2023	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2023	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil furnigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2023	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2023	Levels lower than detect level	0-0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadien e	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2023	Levels lower than detect level	0-0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2023	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0.12	0.06 - 0.12	4	4	ppb	No	Herbicide runoff.
Toxaphene	2023	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0-0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factorie
Xylenes	2023	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

	12:		

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.73	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	98.0%	No	Soil runoff.
NOTE T LINE I		esques it is a pend in	dicator of wate	s quality and the offeetiveness

NOTE: Turbidity is a moof our filtration.

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2023	2,53	0.83	3.8	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2023	0.01	0	0.59	0.80	0.80	ppm	Disinfectant.
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinf-average chlorine disinfection residual level of between 0.5 ppm and 4 ppm.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2023	0	0 - 0		Human and animal fecal waste. Naturally present in the environment.
Giardia	2023	0.18	0.09 - 0.18	(OO) CVStS/L	Human and animal fecal waste. Naturally present in the environment.
OTE: I evels detected are fo	r source water no	ot for drinking water. No cryptosporidium or giardia	were found in drinking wa	ter.	

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead	2022	15	0	0	ppb	N	Corrosion of household plumbing systems; erosion of natural deposits.
Copper	2022	1.30	0.346	0	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

LEAD AND COPPER RULE: The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity.

Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Kaufman is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2023	22.9	11.6-26.8	ppb	By-product of drinking water disinfection.
Bromoform	2023	1.27	0-1,84	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2023	14.8	8.09-19.00	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2023	8.4	4.54-10.9	ppb	By-product of drinking water disinfection,

NOTE: Bromform, hornoform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Calcium	2023	69.8	26.5 - 69.8	ppm	Abundant naturally occurring element.
Chloride	2023	107	30 - 107	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2023	0.516	0.061 - 0.516	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2023	9.77	4.90 - 9.77	ppm	Abundant naturally occurring element.
Manganese	2023	0.158	0.0068 - 0.158	ppm	Abundant naturally occurring element.
Nickel	2023	0.0048	0.0047 - 0.0048	ppm	Erosion of natural deposits.
pН	2023	9.17	6.39 - 9.17	units	Measure of corrosivity of water.
Silver	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2023	95.4	26.5 - 95.4	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2023	171	76.8 - 171	ppm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkalinity as CaCO3	2023	139	51 - 139	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2023	492	263 - 492	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	2023	312	82 - 312	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violations Table

ENTER BEST OF STREET	Violation		
Violation Type	Begin	Violation End	Violation Explanation

NITRATE MONITORING, ROUTINE MAJOR	Jan-23	Mar-23	The North Texas MWD Wylie WTP water system PWS ID TX0430044 has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290< Subchapter F. Public water systems are required to collect and submit chemical samples to the TCEQ on a regular basis. We failed to monitor and/or report the following constituents: Nitrate This/These violation(s) occurred in the monitoring period(s): First Quarter 01/01/2023 - 3/31/2023 Results of regular monitoring are an indicator of whether or not your drinking water is safe from chemical contamination. We did not complete all monitoring and/or reporting for chemical constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time. We are taking the following actions to address the issue: The sample was taken during the required sampling period and results are within compliance criteria. The violation was due to a delay in receiving lab results from a third-party lab. Once the results were released to TCEQ the violation was resolved. Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. If you have questions concerning this matter you may contact NTMWD Water System Manger - Treatment Mr. Gabriel Bowden at (972) 608-7009
			Posted/Delivered on: 3-28-2024

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023

	cteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	E. Coli Maximum	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample	1.00	0	0	NO	Naturally present in the environment.

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2023	0.0219	0.021 - 0.0219	No goal for the total	60	ppb	NO	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	0.478	0.045- 0.478	No goal for the total	80	ppb	NO	By-product of drinking water disinfection.
Bromate	2023	Levels lower than detect level	0 - 0	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0-0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.048	0.041 - 0.048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refinerie erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0-0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industrie
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	199	28 - 199	0-0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.968	0.537 - 0.968	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury .	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.790	0.067 - 0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than defect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2023	0.2	0.1 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2023	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2023	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil furnigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2023	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2023	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2023	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadien e	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2023	Levels lower than detect level	0-0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2023	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0-0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0.12	0.06 - 0.12	4	4	ppb	No	Herbicide runoff.
Toxaphene	2023	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle
Volatile Organic Contaminants	Collection	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0-0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories
Xylenes	2023	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination		
Highest single measurement	1 NTU	0.73	No	Soil runoff.		
Lowest monthly percentage (%) meeting limit	0.3 NTU	98.0%	No	Soil runoff.		
NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.						

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2023	3.27	1.30	4.30	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2023	0.01	0	0.59	0.80	0.80	ppm	Disinfectant.
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 ppm and 4 ppm.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2023	0	0-0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2023	0.18	0.09 - 0.18	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead	6/13/2022	. 15	0.0018	0	ppb		Corrosion of household plumbing systems; erosion of natura deposits.
Copper	6/13/2022	1.30	0.31	0	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

LEAD AND COPPER RULE: The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity.

Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Customer] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2023	41.2	11.7 - 41.2	ppb	By-product of drinking water disinfection.
Bromoform	2023	1.83	1.04 - 1.83	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2023	18.7	7.85 - 18.7	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2023	8.12	4.1 - 8.12	ppb	By-product of drinking water disinfection,

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Calcium	2023	69.8	26.5 - 69.8	ppm	Abundant naturally occurring element.
Chloride	2023	107	107 30 - 107		Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2023	0.516	0.061 - 0.516	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2023	9.77	4.90 - 9.77	ppm	Abundant naturally occurring element.
Manganese	2023	0.158	0.0068 - 0.158	ppm	Abundant naturally occurring element.
Nickel 2023 C		0.0048	0.0047 - 0.0048	ppm	Erosion of natural deposits.
рН	2023	9.17	6.39 - 9.17	units	Measure of corrosivity of water.
Silver	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Sodium	2023	95.4	26.5 - 95.4	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2023	171	76.8 - 171	ppm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkalinity as CaCO3	2023	139	51 - 139	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2023	492	263 - 492	ppm	Total dissolved mineral constituents in water.
otal Hardness as CaCO3	2023	312	82 - 312	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0-0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violations Table

	Violation		· 医乳腺性性结膜性 斯特勒特斯特别 医克里特氏试验检尿道 化对苯甲基酚 医神经病 医神经病 机械电池线热速度 电电子机能 电影的 电光电流管 电影的 化苯甲基甲基酚
Violation Type	Begin	Violation End	Violation Explanation

NITRATE MONITORING, ROUTINE MAJOR	Jan-23	Mar-23	The North Texas MWD Wylie WTP water system PWS ID TX0430044 has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290< Subchapter F. Public water systems are required to collect and submit chemical samples to the TCEQ on a regular basis. We failed to monitor and/or report the following constituents: Nitrate This/These violation(s) occurred in the monitoring period(s): First Quarter 01/01/2023 - 3/31/2023 Results of regular monitoring are an indicator of whether or not your drinking water is safe from chemical contamination. We did not complete all monitoring and/or reporting for chemical constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time. We are taking the following actions to address the issue: The sample was taken during the required sampling period and results are within compliance criteria. The violation was due to a delay in receiving lab results from a third-party lab. Once the results were released to TCEQ the violation was resolved. Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. If you have questions concerning this matter you may contact NTMWD Water System Manger - Treatment Mr. Gabriel Bowden at (972) 608-7009 Posted/Delivered on: 3-28-2024
--------------------------------------	--------	--------	--

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023

			Coli	iform Bact	eria			
Maximum Contaminant Level Goal	Contar	form Maximum ninant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total Pos E. Coli Coli	No. of sitive or Fecal iform nples	Violation	Likely Source of Contamination
0		monthly sample	1.00	0		0	NO	Naturally present in the environment.
NOTE: Reported monthly test potentially harmful bacteria ma		il coliform bacteria. C	oliforms are bacteria that are	naturally prese	nt in the e	nvironmen	and are used	as an indicator that other,
			Regula	ted Contar	ninants	3		
Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2023	0.0219	0.021 -	No goal for the total	60	ppb	NO	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	0.478	0.045 - 0.478	No goal for the total	80	ppb	NO	By-product of drinking water disinfection.
Bromate	2023	Levels lower than detect level	0-0	5	10	ppb	No	By-product of drinking water ozonation.
NOTE: Not all sample results sampling should occur in the f								to determine where compliance
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0-0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0-0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.063	0.063 - 0.063	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0-0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2023	Levels lower than detect level	0-0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural depos discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.664	0.664 - 0.664	4	4	ppm	No	Erosion of natural deposits; water additive which promo strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0-0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries at factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.379	0.379 - 0.379	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion natural deposits; discharge from mines.
Thallium Nitrate Advisory: Nitrate in dri	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from order processing sites; drug factories.
Nitrate Advisory: Nitrate in dri baby syndrome. Nitrate levels care provider.	may rise quick	y for short periods of	time because of rainfall or ag	gricultural activit	y. If you a	re caring fo	r an infant you	should ask advice from your health
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2021	4.8	4.8 - 4.8	0	50	pCi/L	No	Decay of natural and man-made deposits.

0

0-0

0-0

15

pCi/L

pCi/L

No

Erosion of natural deposits.

Erosion of natural deposits.

Gross alpha excluding

radon and uranium

Radium

Levels lower than

detect level Levels lower than detect level

2021

2021

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL.	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2021	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2021	Levels lower than detect level	0-0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2021	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2021	Levels lower than detect level	0-0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2021	Levels lower than detect level	0-0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2021	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2021	0.1	0.1 - 0.1	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2021	Levels lower than detect level	0-0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2021	Levels lower than detect level	0-0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2021	Levels lower than detect level	0-0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2021	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2021	Levels lower than detect level	0-0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2021	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2021	Levels lower than detect level	0-0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2021	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2021	Levels lower than detect level	0-0	2	2	ppb	No	Residue of banned insecticide,
Ethylene dibromide	2021	Levels lower than detect level	0-0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2021	Levels lower than detect level	0-0	0	400	ppt	No	Residue of banned termiticide,
Heptachlor epoxide	2021	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2021	Levels lower than detect level	0-0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadien	2021	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2021	Levels lower than detect level	0-0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2021	Levels lower than detect level	0-0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2021	Levels lower than detect level	0-0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2021	Levels lower than	0-0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2021	detect level Levels lower than	0-0	500	500	ppb	No	Herbicide runoff.
Simazine	2021	detect level Levels lower than	0 - 0	4	4	ppb	No	Herbicide runoff.
Toxaphene	2021	detect level Levels lower than	0-0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and
Volatile Organic	Collection Date	detect level Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Cattle. Likely Source of Contamination
Contaminants 1, 1, 1 - Trichloroethane	2023	Levels lower than	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0-0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than	0-0	0	5	ppb	No	Discharge from industrial chemical factories,
Benzene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories; leaching from gas storage tank and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0-0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0-0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride	2023	Levels lower than detect level	0-0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2023	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0-0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0-0	75	75	ppb	No	Discharge from industrial chemical factories,
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from industrial chemical factories,

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.26	No	Sail runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	100%	No	Soil runoff.

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2023	3.27	1.30	4.30	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2023	0.01	0	0.26	0.80	0.80	ppm	Disinfectant.
Chlorite	2023	0.31	0	0.88	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfluerage chlorine disinfection residual level of between 0.5 ppm and 4 ppm.

	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
The percentage of Total O	rganic Carbon	(TOC) removal was measured each month a	nd the system met all 1	OC removal requiremen	nts set.

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2023	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2023	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.

NOTE: Only source water was evaluated for cryptosporidium and giardia. Levels shown are not for drinking water.

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead	6/13/2022	15	0.0018	0	ppb		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.
Copper	6/13/2022	1.3	0.31	0	ppm		Corrosion of household plumbing systems; erosion of natural deposits.

LEAD AND COPPER RULE: The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity.

Lead and Copper net of drinking water mainly from corrosion of plumbing materials containing lead and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Customer] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2023	41.2	11.7 - 41.2	ppb	By-product of drinking water disinfection.
Bromoform	2023	1.83	1.04 - 1.83	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2023	18.7	7.85 - 18.7	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2023	8.12	4.1 - 6.12	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2023	0.025 - 0.0		ppm	Erosion of natural deposits.
Calcium	2023	45.2	33.8 - 45.2	ppm	Abundant naturally occurring element.
Chloride	2023	21.9	14.7 - 21.9	ppm	Abundant naturally occurring element, used in water purification; by-product of oil field activity.
Iron	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2023	2.89	2.89 - 2.89	ppm	Abundant naturally occurring element.
Manganese	2023	0.0041	0.0041 - 0.0041	ppm	Abundant naturally occurring element.
Nickel	2023	0.0031	0.0031 - 0.0031	ppm	Erosion of natural deposits.
рН	2023	8.3	7.4 - 8.3	units	Measure of corrosivity of water.
Silver	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2023	20.6	16.2 - 20.6	ppm	Erosion of natural deposits; by-product of oil field activity
Sulfate	2023	75.0	47.5 - 75.0	ppm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkalinity as CaCO3	2023	79	40 - 79	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2023	212	136 - 212	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	2023	128	79 - 128	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violations Table

Violation Type	Violation Begin	Violation End	Violation Explanation

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water

Lead and Copper

Lead and Copper	Date Sampled	MCLG	Action Level	90th Percentile	# of Sites over all	Units	Violation	Likely Source of contamination
Copper	2022	1.3	1.3	0.31	30	ppm	N	Erosion of natural Deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead	2022	0	15	1.8	30	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits

Water Quality Test Results

Regulated Contaminants

Disinfection and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic acids (HAA5)	2023	29.8	14.6 – 29.8	No Goal for the total	60	ppb	N	By-Product of drinking water disinfection
Total Trihalomethanes	2023	67.6	23.3 – 67.6	No Goal for the total	80	ppb	N	By-product of drinking water disinfection
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate (Measured as Nitrogen)	2023	0.445	0.445 – 0.445	4	4	ppm	N	Runoff from fertilizer use; Leaching from septic tanks: erosion of natural deposits

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine	2023	3.27	1.30 - 4.30	4	4	ppm	N	Water additive used to control microbes.

For a complete list of parameters and constituents tested, refer to supplemental information, "North Texas Municipal Water District Tawakoni WTP Consumer Confidence Report for Year 2023". The City will post a copy for viewing at City Hall and the Library. A copy is available at the Utility Billing window in City Hall.

^{*} The value in the Highest Level or Average Detected column is the highest average TTHM samples results collected at a location over a year*

Resultados de la prueba de calidad del agua

Contaminantes regulados

Desinfección y subproductos de la desinfección	Fecha de colección	Nivel más alto detectado	Rango de niveles detectados	MCLG	MCL	Unidades	Violación	Fuente probable de contaminación
Ácidos haloacéticos (HAA5)	2023	29.8	14.6 – 29.8	Sin Gol para el total	60	ppb	norte	Subproducto de la desinfección del agua potable
Trihalometanos Totales	2023	67.6	23.3 – 67.6	Sin Gol para el total	80	ppb	norte	Subproducto de la desinfección del agua potable.
Contaminantes inorgánicos	Fecha de colección	Nivel más alto detectado	Rango de niveles detectados	MCLG	MCL	Unidades	Violación	Fuente probable de contaminación
Nitrato (medido como nitrógeno)	2023	0.445	0.445 – 0.445	4	4	ppm	norte	Escorrentía del uso de fertilizantes; Lixiviación de fosas sépticas: erosión de depósitos naturales

^{*}El valor en la columna Nivel más alto o Promedio detectado es el promedio más alto de todos los resultados de muestras HAA5 recopilados en un lugar durante un año

Residuo de desinfectante

Desinfectante Residual	Año	Promedio Nivel	Gama de niveles detectado	MRDL	MRDLG	Unidad de Medida	Violación (S/N)	Fuente en Agua Potable
Cloro	2023	3.27	1.30 - 4.30	4	4	ppm	norte	Aditivo de agua utilizado para controlar

For a complete list of parameters and constituents tested, refer to supplemental information, "North Texas Municipal Water District Tawakoni WTP Consumer Confidence Report for Year 2023". The City will post a copy for viewing at City Hall and the Library. A copy is available at the Utility Billing window in City Hall.

^{*} El valor en la columna Nivel más alto o Promedio detectado es el promedio más alto de resultados de muestras TTHM recolectados en una ubicación durante un año*

beneficios del uso de desinfectantes para controlar los contaminantes microbianos.

MFL: Millones de fibras por litro (una medida de asbesto)

mrem: milirems por año (una medida de radiación absorbida por el cuerpo)

na: No aplicable

NTU: Unidades de turbidez nefelométrica (una medida de turbidez)

pCi /L: Picocuries por litro (una medida de radiactividad)

ppb: microgramos por litro o partes por billón, o una onza en 7,350,000 galones de agua.

ppm: Miligramos por litro o partes por millón - o una onza en 7,350 galones de agua

ppt : Partes por billón o nanogramos por litro (ng/L)

ppq: partes por cuatrillón, o picogramos por litro (pg /L)

Técnica de tratamiento o TT: Un proceso requerido destinado a reducir el nivel de un contaminante en el agua potable

plomo y cobre

plomo y cobre	Fecha de muestreo	MCLG	Nivel de acción	percentil 90	# de sitios en total	Unidades	Violación	Fuente probable de contaminación
Cobre	2022	1.3	1.3	0.31	30	ppm	norte	erosión de depósitos naturales; Lixiviación de conservantes de madera; Corrosión de los sistemas de plomería del hogar
Dirigir	2022	0	15	1.8	30	ppb	norte	Corrosión de los sistemas de plomería del hogar; Erosión de depósitos naturales